Olive leaf extract comes from the leaves of an olive plant. It contains an active ingredient called oleuropein. This nutrient is thought to contribute to the anti-inflammatory and antioxidant properties of olive leaf extract.
- Origin: Plant Based
- Source: Olive Leaf
- Type: Extracts
- Age Range: Adults
- Toxicity: There is no evidence of toxicity until now
- Outcomes: Specific Conditions, Blood Pressure, Cholesterol and Triglycerides
What are Olive Leaf Extract benefits?
Olive leaf extract is a supplement derived from the leaves of the olive plant (the fruit from which olive oil is derived) that contains several therapeutic properties, such as antioxidant (prevents oxidation or cellular damage), anti-inflammatory (reduces the risk of inflammation), anticancer (reduces the risk of cancer), antinociceptive (reduces pain stimuli), antimicrobial (inhibits the growth of microorganisms), gastroprotective (protects the digestive system), and neuroprotective (protects the central nervous system). In addition, according to studies, consuming olive leaf extract may provide the following benefits: reduces cardiovascular risk such as atherosclerosis, lowers blood pressure, helps treat type 2 diabetes, aids in weight loss, eliminates free radicals, boosts immunity, acts against herpes, reduces inflammation, and prevents cancer.
Table of relations
Olive Leaf Extract and Specific Conditions
-
Blood Pressure
Blood pressure is the pressure of circulating blood against the walls of blood vessels which results from the heart pumping blood through the circulatory system. Like most aspects of the organism, this too needs to stay at a healthy range, for the circulation of oxygen and nutrients throughout the body.
-
Cholesterol and Triglycerides
Triglycerides and cholesterol are both types of fat present in blood. They play very important roles in the body, such as hormone metabolism and nutrient circulation. In order for them to function properly, they need to be at optimum levels - not too high neither too low. The primary way to keep those good levels is to have a healthy diet, with lots of fiber and balanced fats. But there are some nutraceutics that have been proven to help in this process in a very effective way.
Related videos about Olive Leaf Extract
References
- ^ a b c d e f Identification of Anti-α-Amylase Components from Olive Leaf Extracts.
- ^ a b c d e f Susalit E, et al. Olive (Olea europaea) leaf extract effective in patients with stage-1 hypertension: comparison with Captopril. Phytomedicine. (2011)
- ^ a b c d e f g h i Somova LI, et al. Antihypertensive, antiatherosclerotic and antioxidant activity of triterpenoids isolated from Olea europaea, subspecies africana leaves. J Ethnopharmacol. (2003)
- ^ Imithi yamasiko – culturally useful plants in the Peddie district of the Eastern Cape with specific reference to Olea europaea subsp. africana.
- ^ a b c d e f Omar SH. Oleuropein in olive and its pharmacological effects. Sci Pharm. (2010)
- ^ 1 H and 13C NMR characterization of new oleuropein aglycones.
- ^ a b Isolation of cornoside from Olea europaea and its transformation into halleridone.
- ^ Accumulation of oleuropein derivatives during olive maturation.
- ^ a b c d e f g h i j k l m n o p de Bock M, et al. Olive (Olea europaea L.) Leaf Polyphenols Improve Insulin Sensitivity in Middle-Aged Overweight Men: A Randomized, Placebo-Controlled, Crossover Trial. PLoS One. (2013)
- ^ a b c d e f g h i Hansen K, et al. Isolation of an angiotensin converting enzyme (ACE) inhibitor from Olea europaea and Olea lancea. Phytomedicine. (1996)
- ^ a b Perrinjaquet-Moccetti T, et al. Food supplementation with an olive (Olea europaea L.) leaf extract reduces blood pressure in borderline hypertensive monozygotic twins. Phytother Res. (2008)
- ^ a b c d e f Phytochemical analysis and gastroprotective activity of an olive leaf extract.
- ^ Phenolic Compounds and Antioxidant Activity of Olea europaea L. Fruits and Leaves.
- ^ a b c d e f Poudyal H, Campbell F, Brown L. Olive leaf extract attenuates cardiac, hepatic, and metabolic changes in high carbohydrate-, high fat-fed rats. J Nutr. (2010)
- ^ Sánchez-González M, et al. Assessment of the safety of maslinic acid, a bioactive compound from Olea europaea L. Mol Nutr Food Res. (2013)
- ^ Alqahtani A, et al. The pentacyclic triterpenoids in herbal medicines and their pharmacological activities in diabetes and diabetic complications. Curr Med Chem. (2013)
- ^ Quirantes-Piné R, et al. HPLC-ESI-QTOF-MS as a Powerful Analytical Tool for Characterising Phenolic Compounds in Olive-leaf Extracts. Phytochem Anal. (2012)
- ^ a b c Biophenolic components of olives.
- ^ Venditti A, et al. Aromadendrine, a new component of the flavonoid pattern of Olea europaea L. and its anti-inflammatory activity. Nat Prod Res. (2013)
- ^ El SN, Karakaya S. Olive tree (Olea europaea) leaves: potential beneficial effects on human health. Nutr Rev. (2009)
- ^ Gandul-Rojas B, Cepero MR, Mínguez-Mosquera MI. Chlorophyll and carotenoid patterns in olive fruits, Olea europaea Cv. arbequina. J Agric Food Chem. (1999)
- ^ Ryan D, et al. Liquid chromatography with electrospray ionisation mass spectrometric detection of phenolic compounds from Olea europaea. J Chromatogr A. (1999)
- ^ Brenes M, et al. Rapid and complete extraction of phenols from olive oil and determination by means of a coulometric electrode array system. J Agric Food Chem. (2000)
- ^ Franconi F, et al. Antioxidant effect of two virgin olive oils depends on the concentration and composition of minor polar compounds. J Agric Food Chem. (2006)
- ^ Brenes M, et al. Acid hydrolysis of secoiridoid aglycons during storage of virgin olive oil. J Agric Food Chem. (2001)
- ^ Pinoresinol and 1-acetoxypinoresinol, two new phenolic compounds identified in olive oil.
- ^ a b HPLC/DAD/ESI/MS detection of lignans from Spanish and Italian Olea europaea L. fruits.
- ^ a b Owen RW, et al. Identification of lignans as major components in the phenolic fraction of olive oil. Clin Chem. (2000)
- ^ Japón-Luján R, Luque-Rodríguez JM, Luque de Castro MD. Dynamic ultrasound-assisted extraction of oleuropein and related biophenols from olive leaves. J Chromatogr A. (2006)
- ^ Importance and evolution of phenolic compounds in olive during growth and maturation.
- ^ a b Tuck KL, Hayball PJ. Major phenolic compounds in olive oil: metabolism and health effects. J Nutr Biochem. (2002)
- ^ Agati G, et al. Nondestructive evaluation of anthocyanins in olive (Olea europaea) fruits by in situ chlorophyll fluorescence spectroscopy. J Agric Food Chem. (2005)
- ^ Panzanaro S, et al. Biochemical characterization of a lipase from olive fruit (Olea europaea L.). Plant Physiol Biochem. (2010)
- ^ Yanik H, et al. Genome-wide identification of alternate bearing-associated microRNAs (miRNAs) in olive (Olea europaea L.). BMC Plant Biol. (2013)
- ^ a b Svobodova M1, et al. Oleuropein as an inhibitor of peroxisome proliferator-activated receptor gamma. Genes Nutr. (2014)
- ^ Manna C, et al. Transport mechanism and metabolism of olive oil hydroxytyrosol in Caco-2 cells. FEBS Lett. (2000)
- ^ a b Visioli F, et al. Olive oil phenolics are dose-dependently absorbed in humans. FEBS Lett. (2000)
- ^ a b Vissers MN, et al. Olive oil phenols are absorbed in humans. J Nutr. (2002)
- ^ a b Corona G, et al. The fate of olive oil polyphenols in the gastrointestinal tract: implications of gastric and colonic microflora-dependent biotransformation. Free Radic Res. (2006)
- ^ Oleuropein, an Antioxidant Polyphenol from Olive Oil, Is Poorly Absorbed from Isolated Perfused Rat Intestine.
- ^ Ciafardini G, et al. Hydrolysis of Oleuropein by Lactobacillus plantarum Strains Associated with Olive Fermentation. Appl Environ Microbiol. (1994)
- ^ Pinto J, et al. Absorption and metabolism of olive oil secoiridoids in the small intestine. Br J Nutr. (2011)
- ^ Tan HW, et al. Simultaneous determination of oleuropein and hydroxytyrosol in rat plasma using liquid chromatography with fluorescence detection. J Chromatogr B Analyt Technol Biomed Life Sci. (2003)
- ^ Del Boccio P, et al. Liquid chromatography-tandem mass spectrometry analysis of oleuropein and its metabolite hydroxytyrosol in rat plasma and urine after oral administration. J Chromatogr B Analyt Technol Biomed Life Sci. (2003)
- ^ a b De Nicoló S, et al. Effects of olive polyphenols administration on nerve growth factor and brain-derived neurotrophic factor in the mouse brain. Nutrition. (2013)
- ^ Ibi M, et al. NOX1/NADPH oxidase negatively regulates nerve growth factor-induced neurite outgrowth. Free Radic Biol Med. (2006)
- ^ Gundimeda U, et al. Green tea polyphenols potentiate the action of nerve growth factor to induce neuritogenesis: possible role of reactive oxygen species. J Neurosci Res. (2010)
- ^ Pasban-Aliabadi H, et al. Inhibition of 6-hydroxydopamine-induced PC12 cell apoptosis by olive (Olea europaea L.) leaf extract is performed by its main component oleuropein. Rejuvenation Res. (2013)
- ^ a b c Kaeidi A, et al. Olive (Olea europaea L.) leaf extract attenuates early diabetic neuropathic pain through prevention of high glucose-induced apoptosis: in vitro and in vivo studies. J Ethnopharmacol. (2011)
- ^ Khayyal MT, et al. Blood pressure lowering effect of an olive leaf extract (Olea europaea) in L-NAME induced hypertension in rats. Arzneimittelforschung. (2002)
- ^ Lasserre B, et al. Effects on rats of aqueous extracts of plants used in folk medicine as antihypertensive agents. Naturwissenschaften. (1983)
- ^ a b c d Gimeno E, et al. Changes in the phenolic content of low density lipoprotein after olive oil consumption in men. A randomized crossover controlled trial. Br J Nutr. (2007)
- ^ a b c Covas MI, et al. The effect of polyphenols in olive oil on heart disease risk factors: a randomized trial. Ann Intern Med. (2006)
- ^ a b c d Marrugat J, et al. Effects of differing phenolic content in dietary olive oils on lipids and LDL oxidation–a randomized controlled trial. Eur J Nutr. (2004)
- ^ a b Rietjens SJ, Bast A, Haenen GR. New insights into controversies on the antioxidant potential of the olive oil antioxidant hydroxytyrosol. J Agric Food Chem. (2007)
- ^ Lapointe A, Couillard C, Lemieux S. Effects of dietary factors on oxidation of low-density lipoprotein particles. J Nutr Biochem. (2006)
- ^ Raederstorff D. Antioxidant activity of olive polyphenols in humans: a review. Int J Vitam Nutr Res. (2009)
- ^ Covas MI, et al. Postprandial LDL phenolic content and LDL oxidation are modulated by olive oil phenolic compounds in humans. Free Radic Biol Med. (2006)
- ^ a b Fitó M, et al. Antioxidant effect of virgin olive oil in patients with stable coronary heart disease: a randomized, crossover, controlled, clinical trial. Atherosclerosis. (2005)
- ^ a b Weinbrenner T, et al. Olive oils high in phenolic compounds modulate oxidative/antioxidative status in men. J Nutr. (2004)
- ^ Visioli F, Galli C. Antiatherogenic components of olive oil. Curr Atheroscler Rep. (2001)
- ^ Carluccio MA, et al. Olive oil and red wine antioxidant polyphenols inhibit endothelial activation: antiatherogenic properties of Mediterranean diet phytochemicals. Arterioscler Thromb Vasc Biol. (2003)
- ^ a b Castañer O, et al. Protection of LDL from oxidation by olive oil polyphenols is associated with a downregulation of CD40-ligand expression and its downstream products in vivo in humans. Am J Clin Nutr. (2012)
- ^ a b c Sato H, et al. Anti-hyperglycemic activity of a TGR5 agonist isolated from Olea europaea. Biochem Biophys Res Commun. (2007)
- ^ a b A G Protein-coupled Receptor Responsive to Bile Acids.
- ^ a b Watanabe M, et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature. (2006)
- ^ a b Baxter JD, Webb P. Metabolism: bile acids heat things up. Nature. (2006)
- ^ Al-Qarawi AA, Al-Damegh MA, ElMougy SA. Effect of freeze dried extract of Olea europaea on the pituitary-thyroid axis in rats. Phytother Res. (2002)
- ^ a b Oi-Kano Y, et al. Extra virgin olive oil increases uncoupling protein 1 content in brown adipose tissue and enhances noradrenaline and adrenaline secretions in rats. J Nutr Biochem. (2007)
- ^ a b c Oi-Kano Y, et al. Oleuropein supplementation increases urinary noradrenaline and testicular testosterone levels and decreases plasma corticosterone level in rats fed high-protein diet. J Nutr Biochem. (2012)
- ^ a b Heinze JE, Hale AH, Carl PL. Specificity of the antiviral agent calcium elenolate. Antimicrob Agents Chemother. (1975)
- ^ a b Renis HE. In vitro antiviral activity of calcium elenolate. Antimicrob Agents Chemother (Bethesda). (1969)
- ^ Ali NH1, Faizi S, Kazmi SU. Antibacterial activity in spices and local medicinal plants against clinical isolates of Karachi, Pakistan. Pharm Biol. (2011)
- ^ Sudjana AN1, et al. Antimicrobial activity of commercial Olea europaea (olive) leaf extract. Int J Antimicrob Agents. (2009)
- ^ Markin D1, Duek L, Berdicevsky I. In vitro antimicrobial activity of olive leaves. Mycoses. (2003)
- ^ Lee OH1, Lee BY. Antioxidant and antimicrobial activities of individual and combined phenolics in Olea europaea leaf extract. Bioresour Technol. (2010)
- ^ Soret MG. Antiviral activity of calcium elenolate on parainfluenza infection of hamsters. Antimicrob Agents Chemother (Bethesda). (1969)
- ^ Knipping K1, Garssen J, van’t Land B. An evaluation of the inhibitory effects against rotavirus infection of edible plant extracts. Virol J. (2012)
- ^ Micol V1, et al. The olive leaf extract exhibits antiviral activity against viral haemorrhagic septicaemia rhabdovirus (VHSV). Antiviral Res. (2005)
- ^ Lee-Huang S1, et al. Anti-HIV activity of olive leaf extract (OLE) and modulation of host cell gene expression by HIV-1 infection and OLE treatment. Biochem Biophys Res Commun. (2003)
- ^ Manna C, et al. Biological effects of hydroxytyrosol, a polyphenol from olive oil endowed with antioxidant activity. Adv Exp Med Biol. (1999)
- ^ Visioli F, Poli A, Gall C. Antioxidant and other biological activities of phenols from olives and olive oil. Med Res Rev. (2002)
- ^ Blekas G, et al. Biophenols in table olives. J Agric Food Chem. (2002)
- ^ Kim JS, Kwon CS, Son KH. Inhibition of alpha-glucosidase and amylase by luteolin, a flavonoid. Biosci Biotechnol Biochem. (2000)
- ^ a b Wainstein J, et al. Olive leaf extract as a hypoglycemic agent in both human diabetic subjects and in rats. J Med Food. (2012)
- ^ a b Cvjetićanin T, et al. Dried leaf extract of Olea europaea ameliorates islet-directed autoimmunity in mice. Br J Nutr. (2010)
- ^ El-Amin M, et al. Anti-diabetic effect of Murraya koenigii (L) and Olea europaea (L) leaf extracts on streptozotocin induced diabetic rats. Pak J Pharm Sci. (2013)
- ^ a b c Eidi A, Eidi M, Darzi R. Antidiabetic effect of Olea europaea L. in normal and diabetic rats. Phytother Res. (2009)
- ^ Neves JM, et al. Ethnopharmacological notes about ancient uses of medicinal plants in Trás-os-Montes (northern of Portugal). J Ethnopharmacol. (2009)
- ^ Leporatti ML, Ivancheva S. Preliminary comparative analysis of medicinal plants used in the traditional medicine of Bulgaria and Italy. J Ethnopharmacol. (2003)
- ^ Koca U, et al. Wound repair potential of Olea europaea L. leaf extracts revealed by in vivo experimental models and comparative evaluation of the extracts’ antioxidant activity. J Med Food. (2011)
- ^ Perugini P, et al. Efficacy of oleuropein against UVB irradiation: preliminary evaluation. Int J Cosmet Sci. (2008)
- ^ a b Sumiyoshi M, Kimura Y. Effects of olive leaf extract and its main component oleuroepin on acute ultraviolet B irradiation-induced skin changes in C57BL/6J mice. Phytother Res. (2010)
- ^ Kimura Y, Sumiyoshi M. Olive leaf extract and its main component oleuropein prevent chronic ultraviolet B radiation-induced skin damage and carcinogenesis in hairless mice. J Nutr. (2009)
- ^ Türkez H, Toğar B. Olive (Olea europaea L.) leaf extract counteracts genotoxicity and oxidative stress of permethrin in human lymphocytes. J Toxicol Sci. (2011)
- ^ a b c Tunca B, et al. Olea europaea leaf extract alters microRNA expression in human glioblastoma cells. J Cancer Res Clin Oncol. (2012)
- ^ Abaza L, et al. Induction of growth inhibition and differentiation of human leukemia HL-60 cells by a Tunisian gerboui olive leaf extract. Biosci Biotechnol Biochem. (2007)
- ^ Fares R, et al. The antioxidant and anti-proliferative activity of the Lebanese Olea europaea extract. Plant Foods Hum Nutr. (2011)
- ^ a b Reyes FJ, et al. (2Alpha,3beta)-2,3-dihydroxyolean-12-en-28-oic acid, a new natural triterpene from Olea europea, induces caspase dependent apoptosis selectively in colon adenocarcinoma cells. FEBS Lett. (2006)
- ^ Mijatovic SA, et al. Multiple antimelanoma potential of dry olive leaf extract. Int J Cancer. (2011)
- ^ The Spectrum of Olive Pollen Allergens.
- ^ a b Florido Lopez JF, et al. An allergen from Olea europaea pollen (Ole e 7) is associated with plant-derived food anaphylaxis. Allergy. (2002)
- ^ Pastorello EA, et al. Clinical role of a lipid transfer protein that acts as a new apple-specific allergen. J Allergy Clin Immunol. (1999)
- ^ Marazuela EG, et al. A non-allergenic Ole e 1-like protein from birch pollen as a tool to design hypoallergenic vaccine candidates. Mol Immunol. (2012)
- ^ Fritsch R, et al. Bet v 1, the major birch pollen allergen, and Mal d 1, the major apple allergen, cross-react at the level of allergen-specific T helper cells. J Allergy Clin Immunol. (1998)
- ^ Asero R. Effects of birch pollen-specific immunotherapy on apple allergy in birch pollen-hypersensitive patients. Clin Exp Allergy. (1998)
- ^ Mauro M, et al. Birch-apple syndrome treated with birch pollen immunotherapy. Int Arch Allergy Immunol. (2011)