Coenzyme Q10, CoQ10

Coenzyme Q10 is a compound found in mitochondria that provides energy to the body’s cells and also plays an important role in the endogenous antioxidant system. It is similar to other pseudovitamin compounds, thus it is essential for survival. The body naturally produces this coenzyme, but its levels normally reduce with age. Coenzyme Q10 supplementation can improve the risks of cardiovascular disease, brain disorders, diabetes, cancer, and blood function, leading to reduced blood pressure.

  • Origin: Synthetic, Nonessential
  • Source: Milk, Eggs, Meat, Fish, Peanuts, Walnuts, Brazil Nuts, Pecan Nut, Almonds, Coconut, Hazelnut, Nonessential, Synthetic
  • Type: Coenzymes
  • Age Range: Adults, Seniors
  • Toxicity: May be toxic in high doses
  • Outcomes: Men’s Health, Specific Conditions, Sperm Quality, Blood Pressure

What are CoQ10 benefits?

COQ10, known as coenzyme Q10, is a molecule found in mitochondria that plays an essential role in energy production for the body and is also important for the endogenous antioxidant system. Coenzyme Q10 can be found in a variety of foods but is most concentrated in meat and fish. According to studies, the production of CoQ10 decreases as humans age. Thus, the elderly appear to be deficient in this compound. In addition, scientific evidence has shown a wide range of benefits related to CoQ10, such as: helping to treat heart failure; aiding fertility; helping to keep skin younger; helping with exercise performance; helping with diabetes (by improving insulin sensitivity and regulating blood sugar levels to help); helping to protect the lungs; reducing headaches; preventing cancer; and improving brain health, because mitochondria are the main energy generators in brain cells.

Table of relations

Outcome
Sub-Outcome
Consistent effects
Strength of effects
Scientific articles

Men's Health CoQ10 and Men's Health

A man's health is the result of various habits throughout his life, such as diet, exercise, vaccinations, routine exams, and family history. Male health has biological differences from female health, such as: hormone levels, sexual life and libido, and the cognitive system. Keeping your body healthy requires discipline and attention to monitoring, because these differences require specific care and solutions for a balanced body. Nutraceuticals can help all areas of man's health to function in harmony, from the extraction of vitamins, minerals, and other substances from nature's plants, fruits, and herbs, they boost the good performance of every part of the body.

  • Sperm Quality

    The quality of the sperm is directly related to the strength that the sperm possesses. This property of the male gamete is influenced by diet and can change with nutritional levels.Male infertility is - for the most part - caused by problems in the concentration, strength of movement, and structure of the sperm. There are several vitamins that help the quality of the sperm and thus increase the chances of fecundation; due to the difficulty of ingesting all of them daily, supplementation is a good option.

Specific Conditions CoQ10 and Specific Conditions

Specific body conditions categorize precise areas of our body, such as: Respiratory allergies; Liver; Eye health; Blood pressure; Cholesterol and triglycerides; and Blood glucose control. These areas require specific attention because they are delicate functions related to other parts of the body. Respiratory allergies, for example, are linked to the immune system, and to present an effective nutraceutical, we keep our scientific base up to date.
  • Blood Pressure

    Blood pressure is the pressure of circulating blood against the walls of blood vessels which results from the heart pumping blood through the circulatory system. Like most aspects of the organism, this too needs to stay at a healthy range, for the circulation of oxygen and nutrients throughout the body.

Table of negative interactions

Drugs
Anisindione, Dicumarol, Warfarin
Foods
Fish, Meat, tree-nuts

Related videos about CoQ10

References

  1. a b Felippi CC, et al. Safety and efficacy of antioxidants-loaded nanoparticles for an anti-aging applicationJ Biomed Nanotechnol. (2012)
  2. a b Trimarco V, et al. Nutraceuticals for blood pressure control in patients with high-normal or grade 1 hypertensionHigh Blood Press Cardiovasc Prev. (2012)
  3. a b Folkers K. Relevance of the biosynthesis of coenzyme Q10 and of the four bases of DNA as a rationale for the molecular causes of cancer and a therapyBiochem Biophys Res Commun. (1996)
  4. a b c Yuan Y, Tian Y, Yue T. Improvement of coenzyme Q10 production: mutagenesis induced by high hydrostatic pressure treatment and optimization of fermentation conditionsJ Biomed Biotechnol. (2012)
  5. a b c d e f g h i j k Coenzymes Q9 and Q10: Contents in Foods and Dietary Intake.
  6. a b c d e f g h i j k l m n o p q r Food content of ubiquinol-10 and ubiquinone-10 in the Japanese diet.
  7. a b c d e f The Quality Control Assessment of Commercially Available Coenzyme Q10-Containing Dietary and Health Supplements in Japan.
  8. a b c d e f g h i j k Pravst I, Zmitek K, Zmitek J. Coenzyme Q10 contents in foods and fortification strategiesCrit Rev Food Sci Nutr. (2010)
  9. ^ Importance and presence of several bio quinones in foods.
  10. a b c d e f g Kamei M, et al. The distribution and content of ubiquinone in foodsInt J Vitam Nutr Res. (1986)
  11. a b c d e f g h i j Passi S, et al. Fatty acid composition and antioxidant levels in muscle tissue of different Mediterranean marine species of fish and shellfishJ Agric Food Chem. (2002)
  12. a b c d e Seasonal variation of Co-enzyme Q10 content in pelagic fish tissues from Eastern Quebec.
  13. a b Weber C, Bysted A, Hølmer G. Coenzyme Q10 in the diet–daily intake and relative bioavailabilityMol Aspects Med. (1997)
  14. ^ Comparison of in-line connected diode array and electrochemical detectors in the high-performance liquid chromatographic analysis of coenzymes Q9 and Q10 in food materials.
  15. a b Strazisar M, et al. Quantitative determination of coenyzme Q10 by liquid chromatography and liquid chromatography/mass spectrometry in dairy productsJ AOAC Int. (2005)
  16. a b Weber C, Bysted A, Hłlmer G. The coenzyme Q10 content of the average Danish dietInt J Vitam Nutr Res. (1997)
  17. ^ Comparison of low-temperature processes for oil and coenzyme Q10 extraction from mackerel and herring.
  18. a b Yoshida H, et al. Production of ubiquinone-10 using bacteriaJ Gen Appl Microbiol. (1998)
  19. ^ Total synthesis of polyprenoid natural-products via pd(o)-catalyzed oligomerizations.
  20. ^ Cluis CP, Burja AM, Martin VJ. Current prospects for the production of coenzyme Q10 in microbesTrends Biotechnol. (2007)
  21. ^ Choi JH, Ryu YW, Seo JH. Biotechnological production and applications of coenzyme Q10Appl Microbiol Biotechnol. (2005)
  22. ^ Ha SJ, et al. Optimization of culture conditions and scale-up to pilot and plant scales for coenzyme Q10 production by Agrobacterium tumefaciensAppl Microbiol Biotechnol. (2007)
  23. ^ Lactate increases coenzyme Q10 production by Agrobacterium tumefaciens.
  24. ^ Zhang D, et al. Ubiquinone-10 production using Agrobacterium tumefaciens dps gene in Escherichia coli by coexpression systemMol Biotechnol. (2007)
  25. a b c d e f g Bhagavan HN, Chopra RK. Coenzyme Q10: absorption, tissue uptake, metabolism and pharmacokineticsFree Radic Res. (2006)
  26. ^ UBIQUINONE-10 AS AN ANTIOXIDANT.
  27. ^ Nohl H, Gille L, Staniek K. The biochemical, pathophysiological, and medical aspects of ubiquinone functionAnn N Y Acad Sci. (1998)
  28. ^ Mancuso M, et al. Coenzyme Q10 in neuromuscular and neurodegenerative disordersCurr Drug Targets. (2010)
  29. ^ Beg S, Javed S, Kohli K. Bioavailability enhancement of coenzyme Q10: an extensive review of patentsRecent Pat Drug Deliv Formul. (2010)
  30. ^ The Biosynthesis of Ubiquinone and Rhodoquinone from p-Hydroxybenzoate and D-Hydroxybenzaldehyde in Rhodospirillum rubrum.
  31. ^ Goldstein JL, Brown MS. Regulation of the mevalonate pathwayNature. (1990)
  32. ^ Bentinger M, Tekle M, Dallner G. Coenzyme Q–biosynthesis and functionsBiochem Biophys Res Commun. (2010)
  33. ^ Thelin A, et al. Effect of squalestatin 1 on the biosynthesis of the mevalonate pathway lipidsBiochim Biophys Acta. (1994)
  34. ^ Keller RK. Squalene synthase inhibition alters metabolism of nonsterols in rat liverBiochim Biophys Acta. (1996)
  35. ^ Biochemical and clinical consequences of inhibiting coenzyme Q10 biosynthesis by lipid-lowering HMG-CoA reductase inhibitors (statins): A critical overview.
  36. ^ Kalén A, Appelkvist EL, Dallner G. Age-related changes in the lipid compositions of rat and human tissuesLipids. (1989)
  37. a b Ernster L, Dallner G. Biochemical, physiological and medical aspects of ubiquinone functionBiochim Biophys Acta. (1995)
  38. ^ Bonakdar RA, Guarneri E. Coenzyme Q10Am Fam Physician. (2005)
  39. ^ COENZYME Q-10: EFFICACY, SAFETY, AND USE.
  40. a b c Zhang Y, et al. Uptake of dietary coenzyme Q supplement is limited in ratsJ Nutr. (1995)
  41. ^ Distribution of Coenzyme Q in Rat Liver Cell Fractions.
  42. a b c d e Zhang Y, Turunen M, Appelkvist EL. Restricted uptake of dietary coenzyme Q is in contrast to the unrestricted uptake of alpha-tocopherol into rat organs and cellsJ Nutr. (1996)
  43. ^ Saito Y, et al. Characterization of cellular uptake and distribution of coenzyme Q10 and vitamin E in PC12 cellsJ Nutr Biochem. (2009)
  44. ^ Dietary antioxidants: potential effects on oxidative products in cigarette smoke.
  45. ^ Studies on lymphatic absorption of 1′,2′-( 3 H)-coenzyme Q 10 in rats.
  46. ^ Assessment of coenzyme Q10 absorption using an in vitro digestion-Caco-2 cell model.
  47. a b Bentinger M, et al. Distribution and breakdown of labeled coenzyme Q10 in ratFree Radic Biol Med. (2003)
  48. ^ Bioequivalence of coenzyme Q10 from over-the-counter supplements.
  49. a b Miles MV, et al. Plasma coenzyme Q10 reference intervals, but not redox status, are affected by gender and race in self-reported healthy adultsClin Chim Acta. (2003)
  50. ^ Lönnrot K, et al. The effect of ascorbate and ubiquinone supplementation on plasma and CSF total antioxidant capacityFree Radic Biol Med. (1996)
  51. a b Lyon W, et al. Similar therapeutic serum levels attained with emulsified and oil-based preparations of coenzyme Q10Asia Pac J Clin Nutr. (2001)
  52. a b c Chopra RK, et al. Relative bioavailability of coenzyme Q10 formulations in human subjectsInt J Vitam Nutr Res. (1998)
  53. ^ Weber C, et al. Antioxidative effect of dietary coenzyme Q10 in human blood plasmaInt J Vitam Nutr Res. (1994)
  54. ^ Folkers K, Moesgaard S, Morita M. A one year bioavailability study of coenzyme Q10 with 3 months withdrawal periodMol Aspects Med. (1994)
  55. a b c Kaikkonen J, et al. Effect of oral coenzyme Q10 supplementation on the oxidation resistance of human VLDL+LDL fraction: absorption and antioxidative properties of oil and granule-based preparationsFree Radic Biol Med. (1997)
  56. a b Lu WL, et al. Total coenzyme Q10 concentrations in Asian men following multiple oral 50-mg doses administered as coenzyme Q10 sustained release tablets or regular tabletsBiol Pharm Bull. (2003)
  57. a b Nuku K, et al. Safety assessment of PureSorb-Q40 in healthy subjects and serum coenzyme Q10 level in excessive dosingJ Nutr Sci Vitaminol (Tokyo). (2007)
  58. ^ Nukui K, et al. Comparison of uptake between PureSorb-Q40 and regular hydrophobic coenzyme Q10 in rats and humans after single oral intakeJ Nutr Sci Vitaminol (Tokyo). (2007)
  59. ^ Nukui K, et al. A 91-d repeated dose oral toxicity study of PureSorb-Q(TM)40 in ratsJ Nutr Sci Vitaminol (Tokyo). (2007)
  60. ^ Laaksonen R, et al. Serum and muscle tissue ubiquinone levels in healthy subjectsJ Lab Clin Med. (1995)
  61. a b c d Aberg F, et al. Distribution and redox state of ubiquinones in rat and human tissuesArch Biochem Biophys. (1992)
  62. ^ Bioequivalence of coenzyme Q10 from over-the-counter supplements.
  63. ^ Sohal RS, Forster MJ. Coenzyme Q, oxidative stress and agingMitochondrion. (2007)
  64. ^ Lass A, Forster MJ, Sohal RS. Effects of coenzyme Q10 and alpha-tocopherol administration on their tissue levels in the mouse: elevation of mitochondrial alpha-tocopherol by coenzyme Q10Free Radic Biol Med. (1999)
  65. a b c Matthews RT, et al. Coenzyme Q10 administration increases brain mitochondrial concentrations and exerts neuroprotective effectsProc Natl Acad Sci U S A. (1998)
  66. ^ Coenzyme Q10 administration increases brain mitochondrial concentrations and exerts neuroprotective effect.
  67. ^ Kwong LK, et al. Effects of coenzyme Q(10) administration on its tissue concentrations, mitochondrial oxidant generation, and oxidative stress in the ratFree Radic Biol Med. (2002)
  68. ^ Kamzalov S, et al. Coenzyme Q intake elevates the mitochondrial and tissue levels of Coenzyme Q and alpha-tocopherol in young miceJ Nutr. (2003)
  69. ^ Niklowitz P, et al. Enrichment of coenzyme Q10 in plasma and blood cells: defense against oxidative damageInt J Biol Sci. (2007)
  70. a b c Baskaran R1, et al. The effect of coenzyme Q10 on the pharmacokinetic parameters of theophyllineArch Pharm Res. (2008)
  71. a b Itagaki S1, et al. Interaction of coenzyme Q10 with the intestinal drug transporter P-glycoproteinJ Agric Food Chem. (2008)
  72. ^ Zhou Q1, Zhou S, Chan E. Effect of coenzyme Q10 on warfarin hydroxylation in rat and human liver microsomesCurr Drug Metab. (2005)
  73. ^ Zhou S1, Chan E. Effect of ubidecarenone on warfarin anticoagulation and pharmacokinetics of warfarin enantiomers in ratsDrug Metabol Drug Interact. (2001)
  74. ^ [Interaction between warfarin and coenzyme Q10.
  75. a b Spigset O. Reduced effect of warfarin caused by ubidecarenoneLancet. (1994)
  76. ^ Shalansky S1, et al. Risk of warfarin-related bleeding events and supratherapeutic international normalized ratios associated with complementary and alternative medicine: a longitudinal analysisPharmacotherapy. (2007)
  77. ^ Engelsen J, Nielsen JD, Winther K. Effect of coenzyme Q10 and Ginkgo biloba on warfarin dosage in stable, long-term warfarin treated outpatients. A randomised, double blind, placebo-crossover trialThromb Haemost. (2002)
  78. a b Parrado-Fernández C, et al. Calorie restriction modifies ubiquinone and COQ transcript levels in mouse tissuesFree Radic Biol Med. (2011)
  79. ^ Lass A, Kwong L, Sohal RS. Mitochondrial coenzyme Q content and agingBiofactors. (1999)
  80. ^ Ramsey JJ, et al. Proton leak and hydrogen peroxide production in liver mitochondria from energy-restricted ratsAm J Physiol Endocrinol Metab. (2004)
  81. ^ Kamzalov S, Sohal RS. Effect of age and caloric restriction on coenzyme Q and alpha-tocopherol levels in the ratExp Gerontol. (2004)
  82. ^ Armeni T, et al. Mitochondrial dysfunctions during aging: vitamin E deficiency or caloric restriction–two different ways of modulating stressJ Bioenerg Biomembr. (2003)
  83. ^ Spindler SR, et al. Statin treatment increases lifespan and improves cardiac health in Drosophila by decreasing specific protein prenylationPLoS One. (2012)
  84. ^ Larsen PL, Clarke CF. Extension of life-span in Caenorhabditis elegans by a diet lacking coenzyme QScience. (2002)
  85. ^ Asencio C, et al. Silencing of ubiquinone biosynthesis genes extends life span in Caenorhabditis elegansFASEB J. (2003)
  86. ^ Branicky R, Bénard C, Hekimi S. clk-1, mitochondria, and physiological ratesBioessays. (2000)
  87. ^ Saiki R, et al. Altered bacterial metabolism, not coenzyme Q content, is responsible for the lifespan extension in Caenorhabditis elegans fed an Escherichia coli diet lacking coenzyme QAging Cell. (2008)
  88. a b c Sohal RS, et al. Effect of coenzyme Q10 intake on endogenous coenzyme Q content, mitochondrial electron transport chain, antioxidative defenses, and life span of miceFree Radic Biol Med. (2006)
  89. a b Lönnrot K, et al. The effects of lifelong ubiquinone Q10 supplementation on the Q9 and Q10 tissue concentrations and life span of male rats and miceBiochem Mol Biol Int. (1998)
  90. ^ Lee CK, et al. The impact of alpha-lipoic acid, coenzyme Q10 and caloric restriction on life span and gene expression patterns in miceFree Radic Biol Med. (2004)
  91. a b c d e f Sumien N, et al. Prolonged intake of coenzyme Q10 impairs cognitive functions in miceJ Nutr. (2009)
  92. ^ Guidance for Industry Estimating the Maximum Safe Starting Dose in Initial Clinical Trials for Therapeutics in Adult Healthy Volunteers.
  93. ^ Shetty RA, Forster MJ, Sumien N. Coenzyme Q(10) supplementation reverses age-related impairments in spatial learning and lowers protein oxidationAge (Dordr). (2012)
  94. ^ Fornai F, et al. Parkinson-like syndrome induced by continuous MPTP infusion: convergent roles of the ubiquitin-proteasome system and alpha-synucleinProc Natl Acad Sci U S A. (2005)
  95. a b c d Yang L, et al. Combination therapy with coenzyme Q10 and creatine produces additive neuroprotective effects in models of Parkinson’s and Huntington’s diseasesJ Neurochem. (2009)
  96. ^ The Mitochondrial Toxin 3-Nitropropionic Acid Induces Striatal Neurodegeneration via a c-Jun N-Terminal Kinase/c-Jun Module.
  97. ^ Schulz JB, et al. Neuroprotective strategies for treatment of lesions produced by mitochondrial toxins: implications for neurodegenerative diseasesNeuroscience. (1996)
  98. a b Virmani A, Gaetani F, Binienda Z. Effects of metabolic modifiers such as carnitines, coenzyme Q10, and PUFAs against different forms of neurotoxic insults: metabolic inhibitors, MPTP, and methamphetamineAnn N Y Acad Sci. (2005)
  99. a b c Beal MF. Neuroprotective effects of creatineAmino Acids. (2011)
  100. ^ Maes M, et al. A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illnessProg Neuropsychopharmacol Biol Psychiatry. (2011)
  101. a b c Maes M, et al. Lower plasma Coenzyme Q10 in depression: a marker for treatment resistance and chronic fatigue in depression and a risk factor to cardiovascular disorder in that illnessNeuro Endocrinol Lett. (2009)
  102. a b Aboul-Fotouh S. Coenzyme Q10 displays antidepressant-like activity with reduction of hippocampal oxidative/nitrosative DNA damage in chronically stressed ratsPharmacol Biochem Behav. (2013)
  103. ^ Forester BP, et al. Coenzyme Q10 effects on creatine kinase activity and mood in geriatric bipolar depressionJ Geriatr Psychiatry Neurol. (2012)
  104. a b Rozen TD, et al. Open label trial of coenzyme Q10 as a migraine preventiveCephalalgia. (2002)
  105. a b Sándor PS, et al. Efficacy of coenzyme Q10 in migraine prophylaxis: a randomized controlled trialNeurology. (2005)
  106. a b Slater SK, et al. A randomized, double-blinded, placebo-controlled, crossover, add-on study of CoEnzyme Q10 in the prevention of pediatric and adolescent migraineCephalalgia. (2011)
  107. ^ Rosenfeldt F, et al. Coenzyme Q10 therapy before cardiac surgery improves mitochondrial function and in vitro contractility of myocardial tissueJ Thorac Cardiovasc Surg. (2005)
  108. a b Folkers K, Vadhanavikit S, Mortensen SA. Biochemical rationale and myocardial tissue data on the effective therapy of cardiomyopathy with coenzyme Q10Proc Natl Acad Sci U S A. (1985)
  109. ^ Langsjoen PH, Vadhanavikit S, Folkers K. Response of patients in classes III and IV of cardiomyopathy to therapy in a blind and crossover trial with coenzyme Q10Proc Natl Acad Sci U S A. (1985)
  110. ^ Conklin KA. Coenzyme q10 for prevention of anthracycline-induced cardiotoxicityIntegr Cancer Ther. (2005)
  111. ^ Greenlee H, et al. Lack of effect of coenzyme q10 on doxorubicin cytotoxicity in breast cancer cell culturesIntegr Cancer Ther. (2012)
  112. ^ Zhou Q, Chowbay B. Effect of coenzyme Q10 on the disposition of doxorubicin in ratsEur J Drug Metab Pharmacokinet. (2002)
  113. ^ El-Sheikh AA, et al. Effect of coenzyme-q10 on Doxorubicin-induced nephrotoxicity in ratsAdv Pharmacol Sci. (2012)
  114. ^ Shinozawa S, Gomita Y, Araki Y. Protective effects of various drugs on adriamycin (doxorubicin)-induced toxicity and microsomal lipid peroxidation in mice and ratsBiol Pharm Bull. (1993)
  115. ^ Eaton S, et al. Plasma coenzyme Q(10) in children and adolescents undergoing doxorubicin therapyClin Chim Acta. (2000)
  116. ^ Brea-Calvo G, et al. Chemotherapy induces an increase in coenzyme Q10 levels in cancer cell linesFree Radic Biol Med. (2006)
  117. a b Molyneux SL, et al. Coenzyme Q10: an independent predictor of mortality in chronic heart failureJ Am Coll Cardiol. (2008)
  118. ^ Hughes K, et al. Coenzyme Q10 and differences in coronary heart disease risk in Asian Indians and ChineseFree Radic Biol Med. (2002)
  119. ^ Kalenikova EI, et al. Chronic administration of coenzyme Q10 limits postinfarct myocardial remodeling in ratsBiochemistry (Mosc). (2007)
  120. ^ Littarru GP, Tiano L. Clinical aspects of coenzyme Q10: an updateCurr Opin Clin Nutr Metab Care. (2005)
  121. ^ Sarter B. Coenzyme Q10 and cardiovascular disease: a reviewJ Cardiovasc Nurs. (2002)
  122. a b Singh RB, et al. Randomized, double-blind placebo-controlled trial of coenzyme Q10 in patients with acute myocardial infarctionCardiovasc Drugs Ther. (1998)
  123. a b c Singh RB, et al. Effect of coenzyme Q10 on risk of atherosclerosis in patients with recent myocardial infarctionMol Cell Biochem. (2003)
  124. ^ Khatta M, et al. The effect of coenzyme Q10 in patients with congestive heart failureAnn Intern Med. (2000)
  125. ^ Chew GT, et al. Hemodynamic effects of fenofibrate and coenzyme Q10 in type 2 diabetic subjects with left ventricular diastolic dysfunctionDiabetes Care. (2008)
  126. ^ Permanetter B, et al. Ubiquinone (coenzyme Q10) in the long-term treatment of idiopathic dilated cardiomyopathyEur Heart J. (1992)
  127. ^ Hofman-Bang C, et al. Coenzyme Q10 as an adjunctive in the treatment of chronic congestive heart failure. The Q10 Study GroupJ Card Fail. (1995)
  128. ^ Adarsh K, Kaur H, Mohan V. Coenzyme Q10 (CoQ10) in isolated diastolic heart failure in hypertrophic cardiomyopathy (HCM)Biofactors. (2008)
  129. ^ Alehagen U, et al. Cardiovascular mortality and N-terminal-proBNP reduced after combined selenium and coenzyme Q10 supplementation: A 5-year prospective randomized double-blind placebo-controlled trial among elderly Swedish citizensInt J Cardiol. (2013)
  130. a b Tiano L, et al. Effect of coenzyme Q10 administration on endothelial function and extracellular superoxide dismutase in patients with ischaemic heart disease: a double-blind, randomized controlled studyEur Heart J. (2007)
  131. ^ Marklund SL. Extracellular superoxide dismutase and other superoxide dismutase isoenzymes in tissues from nine mammalian speciesBiochem J. (1984)
  132. ^ Landmesser U, et al. Vascular extracellular superoxide dismutase activity in patients with coronary artery disease: relation to endothelium-dependent vasodilationCirculation. (2000)
  133. ^ Hare JM, Stamler JS. NO/redox disequilibrium in the failing heart and cardiovascular systemJ Clin Invest. (2005)
  134. ^ Fukai T, et al. Extracellular superoxide dismutase and cardiovascular diseaseCardiovasc Res. (2002)
  135. a b Hamilton SJ, Chew GT, Watts GF. Coenzyme Q10 improves endothelial dysfunction in statin-treated type 2 diabetic patientsDiabetes Care. (2009)
  136. ^ Watts GF, et al. Coenzyme Q(10) improves endothelial dysfunction of the brachial artery in Type II diabetes mellitusDiabetologia. (2002)
  137. ^ Belardinelli R, et al. Coenzyme Q10 and exercise training in chronic heart failureEur Heart J. (2006)
  138. a b Lee YJ, et al. Effects of coenzyme Q10 on arterial stiffness, metabolic parameters, and fatigue in obese subjects: a double-blind randomized controlled studyJ Med Food. (2011)
  139. ^ Gao L, et al. Effects of coenzyme Q10 on vascular endothelial function in humans: a meta-analysis of randomized controlled trialsAtherosclerosis. (2012)
  140. a b Ho MJ, Bellusci A, Wright JM. Blood pressure lowering efficacy of coenzyme Q10 for primary hypertensionCochrane Database Syst Rev. (2009)
  141. ^ Young JM, et al. A randomized, double-blind, placebo-controlled crossover study of coenzyme Q10 therapy in hypertensive patients with the metabolic syndromeAm J Hypertens. (2012)
  142. a b c Mabuchi H, et al. Effects of CoQ10 supplementation on plasma lipoprotein lipid, CoQ10 and liver and muscle enzyme levels in hypercholesterolemic patients treated with atorvastatin: a randomized double-blind studyAtherosclerosis. (2007)
  143. ^ Ubiquinol-10 protects human low density lipoprotein more efficiently against lipid peroxidation than does alpha-tocopherol.
  144. ^ Yamashita S, Yamamoto Y. Simultaneous detection of ubiquinol and ubiquinone in human plasma as a marker of oxidative stressAnal Biochem. (1997)
  145. ^ Yamamoto Y, Yamashita S. Plasma ratio of ubiquinol and ubiquinone as a marker of oxidative stressMol Aspects Med. (1997)
  146. ^ Tomasetti M, et al. Distribution of antioxidants among blood components and lipoproteins: significance of lipids/CoQ10 ratio as a possible marker of increased risk for atherosclerosisBiofactors. (1999)
  147. a b Tsai KL, et al. A novel mechanism of coenzyme Q10 protects against human endothelial cells from oxidative stress-induced injury by modulating NO-related pathwaysJ Nutr Biochem. (2012)
  148. a b c d Tsai KL, et al. Coenzyme Q10 suppresses oxLDL-induced endothelial oxidative injuries by the modulation of LOX-1-mediated ROS generation via the AMPK/PKC/NADPH oxidase signaling pathwayMol Nutr Food Res. (2011)
  149. ^ Marshall HE, Merchant K, Stamler JS. Nitrosation and oxidation in the regulation of gene expressionFASEB J. (2000)
  150. ^ Schmelzer C, et al. Functions of coenzyme Q10 in inflammation and gene expressionBiofactors. (2008)
  151. ^ Lee BJ, et al. Coenzyme Q10 supplementation reduces oxidative stress and increases antioxidant enzyme activity in patients with coronary artery diseaseNutrition. (2012)
  152. ^ Singh RB, et al. Plasma levels of antioxidant vitamins and oxidative stress in patients with acute myocardial infarctionActa Cardiol. (1994)
  153. a b Mezawa M, et al. The reduced form of coenzyme Q10 improves glycemic control in patients with type 2 diabetes: an open label pilot studyBiofactors. (2012)
  154. ^ McCarty MF. Can correction of sub-optimal coenzyme Q status improve beta-cell function in type II diabeticsMed Hypotheses. (1999)
  155. ^ Hodgson JM, et al. Coenzyme Q10 improves blood pressure and glycaemic control: a controlled trial in subjects with type 2 diabetesEur J Clin Nutr. (2002)
  156. ^ Dzugkoev SG, Kaloeva MB, Dzugkoeva FS. Effect of combination therapy with coenzyme Q10 on functional and metabolic parameters in patients with type 1 diabetes mellitusBull Exp Biol Med. (2012)
  157. ^ Eriksson JG, et al. The effect of coenzyme Q10 administration on metabolic control in patients with type 2 diabetes mellitusBiofactors. (1999)
  158. ^ Golbidi S, Ebadi SA, Laher I. Antioxidants in the treatment of diabetesCurr Diabetes Rev. (2011)
  159. ^ Kostolanská J, Jakus V, Barák L. HbA1c and serum levels of advanced glycation and oxidation protein products in poorly and well controlled children and adolescents with type 1 diabetes mellitusJ Pediatr Endocrinol Metab. (2009)
  160. ^ Persson MF, et al. Coenzyme Q10 prevents GDP-sensitive mitochondrial uncoupling, glomerular hyperfiltration and proteinuria in kidneys from db/db mice as a model of type 2 diabetesDiabetologia. (2012)
  161. ^ Sourris KC, et al. Ubiquinone (coenzyme Q10) prevents renal mitochondrial dysfunction in an experimental model of type 2 diabetesFree Radic Biol Med. (2012)
  162. ^ Ahmadvand H, Tavafi M, Khosrowbeygi A. Amelioration of altered antioxidant enzymes activity and glomerulosclerosis by coenzyme Q10 in alloxan-induced diabetic ratsJ Diabetes Complications. (2012)
  163. ^ Huynh K, et al. Coenzyme Q10 attenuates diastolic dysfunction, cardiomyocyte hypertrophy and cardiac fibrosis in the db/db mouse model of type 2 diabetesDiabetologia. (2012)
  164. ^ Shi TJ, et al. Coenzyme Q10 prevents peripheral neuropathy and attenuates neuron loss in the db-/db- mouse, a type 2 diabetes modelProc Natl Acad Sci U S A. (2013)
  165. ^ Zhang YP, et al. Prophylactic and Antinociceptive Effects of Coenzyme Q10 on Diabetic Neuropathic Pain in a Mouse Model of Type 1 DiabetesAnesthesiology. (2013)
  166. a b c Duncan AJ, et al. Determination of coenzyme Q10 status in blood mononuclear cells, skeletal muscle, and plasma by HPLC with di-propoxy-coenzyme Q10 as an internal standardClin Chem. (2005)
  167. ^ Miles MV, et al. Age-related changes in plasma coenzyme Q10 concentrations and redox state in apparently healthy children and adultsClin Chim Acta. (2004)
  168. a b Karlsson J, et al. Muscle ubiquinone in healthy physically active malesMol Cell Biochem. (1996)
  169. a b c Wagner AE, et al. A combination of lipoic acid plus coenzyme Q10 induces PGC1α, a master switch of energy metabolism, improves stress response, and increases cellular glutathione levels in cultured C2C12 skeletal muscle cellsOxid Med Cell Longev. (2012)
  170. ^ Lin J, et al. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibresNature. (2002)
  171. ^ Liang H, Ward WF. PGC-1alpha: a key regulator of energy metabolismAdv Physiol Educ. (2006)
  172. ^ Anderson R, Prolla T. PGC-1alpha in aging and anti-aging interventionsBiochim Biophys Acta. (2009)
  173. ^ Pilegaard H, Saltin B, Neufer PD. Exercise induces transient transcriptional activation of the PGC-1alpha gene in human skeletal muscleJ Physiol. (2003)
  174. ^ Nierobisz LS, et al. Fiber phenotype and coenzyme Q₁₀ content in Turkey skeletal musclesCells Tissues Organs. (2010)
  175. ^ Sommerville RB, Zaidman CM, Pestronk A. Coenzyme Q10 deficiency in children: Frequent type 2C muscle fibers with normal morphologyMuscle Nerve. (2013)
  176. a b Deichmann RE, Lavie CJ, Dornelles AC. Impact of coenzyme Q-10 on parameters of cardiorespiratory fitness and muscle performance in older athletes taking statinsPhys Sportsmed. (2012)
  177. a b Cooke M, et al. Effects of acute and 14-day coenzyme Q10 supplementation on exercise performance in both trained and untrained individualsJ Int Soc Sports Nutr. (2008)
  178. a b Ostman B, et al. Coenzyme Q10 supplementation and exercise-induced oxidative stress in humansNutrition. (2012)
  179. ^ Bloomer RJ, et al. Impact of oral ubiquinol on blood oxidative stress and exercise performanceOxid Med Cell Longev. (2012)
  180. ^ Zhou S, et al. Muscle and plasma coenzyme Q10 concentration, aerobic power and exercise economy of healthy men in response to four weeks of supplementationJ Sports Med Phys Fitness. (2005)
  181. a b c Gökbel H, et al. The effects of coenzyme Q10 supplementation on performance during repeated bouts of supramaximal exercise in sedentary menJ Strength Cond Res. (2010)
  182. ^ Gül I, et al. Oxidative stress and antioxidant defense in plasma after repeated bouts of supramaximal exercise: the effect of coenzyme Q10J Sports Med Phys Fitness. (2011)
  183. ^ Muraki A, et al. Coenzyme Q10 reverses mitochondrial dysfunction in atorvastatin-treated mice and increases exercise enduranceJ Appl Physiol. (2012)
  184. a b Mizuno K, et al. Antifatigue effects of coenzyme Q10 during physical fatigueNutrition. (2008)
  185. ^ Kon M, et al. Effect of Coenzyme Q10 supplementation on exercise-induced muscular injury of ratsExerc Immunol Rev. (2007)
  186. ^ Nagai S, et al. The effect of Coenzyme Q10 on reperfusion injury in canine myocardiumJ Mol Cell Cardiol. (1985)
  187. ^ Kambara N, et al. Mechanism responsible for endotoxin-induced lung microsomal dysfunction in ratsLung. (1983)
  188. ^ Kon M, et al. Reducing exercise-induced muscular injury in kendo athletes with supplementation of coenzyme Q10Br J Nutr. (2008)
  189. ^ Zheng A, Moritani T. Influence of CoQ10 on autonomic nervous activity and energy metabolism during exercise in healthy subjectsJ Nutr Sci Vitaminol (Tokyo). (2008)
  190. ^ Fu X, Ji R, Dam J. Antifatigue effect of coenzyme Q10 in miceJ Med Food. (2010)
  191. ^ Sun M, et al. Mitochondrial nutrients stimulate performance and mitochondrial biogenesis in exhaustively exercised ratsScand J Med Sci Sports. (2012)
  192. ^ Glover EI, et al. A randomized trial of coenzyme Q10 in mitochondrial disordersMuscle Nerve. (2010)
  193. ^ Crane FL. Biochemical functions of coenzyme Q10J Am Coll Nutr. (2001)
  194. ^ Linnane AW, et al. Cellular redox activity of coenzyme Q10: effect of CoQ10 supplementation on human skeletal muscleFree Radic Res. (2002)
  195. ^ Turunen M, Olsson J, Dallner G. Metabolism and function of coenzyme QBiochim Biophys Acta. (2004)
  196. a b Bentinger M, Brismar K, Dallner G. The antioxidant role of coenzyme QMitochondrion. (2007)
  197. ^ Forsmark-Andrée P, et al. Lipid peroxidation and changes in the ubiquinone content and the respiratory chain enzymes of submitochondrial particlesFree Radic Biol Med. (1997)
  198. a b Mukai K, Kikuchi S, Urano S. Stopped-flow kinetic study of the regeneration reaction of tocopheroxyl radical by reduced ubiquinone-10 in solutionBiochim Biophys Acta. (1990)
  199. ^ Forsmark-Andrée P, Dallner G, Ernster L. Endogenous ubiquinol prevents protein modification accompanying lipid peroxidation in beef heart submitochondrial particlesFree Radic Biol Med. (1995)
  200. ^ Forsmark-Andrée P, et al. Oxidative modification of nicotinamide nucleotide transhydrogenase in submitochondrial particles: effect of endogenous ubiquinolArch Biochem Biophys. (1996)
  201. ^ Coenzyme Q10 enrichment decreases oxidative DNA damage in human lymphocytes.
  202. ^ Lewis KN, et al. Nrf2, a guardian of healthspan and gatekeeper of species longevityIntegr Comp Biol. (2010)
  203. ^ Reuland DJ, et al. Upregulation of phase II enzymes through phytochemical activation of Nrf2 protects cardiomyocytes against oxidant stressFree Radic Biol Med. (2013)
  204. ^ Hybertson BM, et al. Oxidative stress in health and disease: the therapeutic potential of Nrf2 activationMol Aspects Med. (2011)
  205. a b Choi HK, et al. Inhibition of liver fibrosis by solubilized coenzyme Q10: Role of Nrf2 activation in inhibiting transforming growth factor-beta1 expressionToxicol Appl Pharmacol. (2009)
  206. a b Wada H, et al. Redox status of coenzyme Q10 is associated with chronological ageJ Am Geriatr Soc. (2007)
  207. ^ Sohal RS. Hydrogen peroxide production by mitochondria may be a biomarker of agingMech Ageing Dev. (1991)
  208. ^ HARMAN D. Aging: a theory based on free radical and radiation chemistryJ Gerontol. (1956)
  209. ^ Fuchs J, et al. Electron paramagnetic resonance (EPR) imaging in skin: biophysical and biochemical microscopyJ Invest Dermatol. (1992)
  210. ^ A survey of reactive oxygen species and their role in dermatology.
  211. ^ Sun Y, Oberley LW. Redox regulation of transcriptional activatorsFree Radic Biol Med. (1996)
  212. ^ Cerutti PA, Trump BF. Inflammation and oxidative stress in carcinogenesisCancer Cells. (1991)
  213. ^ Suzuki YJ, Forman HJ, Sevanian A. Oxidants as stimulators of signal transductionFree Radic Biol Med. (1997)
  214. ^ Shindo Y, et al. Enzymic and non-enzymic antioxidants in epidermis and dermis of human skinJ Invest Dermatol. (1994)
  215. ^ Podda M, et al. UV-irradiation depletes antioxidants and causes oxidative damage in a model of human skinFree Radic Biol Med. (1998)
  216. ^ Hoppe U, et al. Coenzyme Q10, a cutaneous antioxidant and energizerBiofactors. (1999)
  217. ^ del Hoyo P, et al. Oxidative stress in skin fibroblasts cultures from patients with Parkinson’s diseaseBMC Neurol. (2010)
  218. ^ del Hoyo P, et al. Oxidative stress in skin fibroblasts cultures of patients with Huntington’s diseaseNeurochem Res. (2006)
  219. a b c Cordero MD, et al. Mitochondrial dysfunction in skin biopsies and blood mononuclear cells from two cases of fibromyalgia patientsClin Biochem. (2010)
  220. a b Prahl S, et al. Aging skin is functionally anaerobic: importance of coenzyme Q10 for anti aging skin careBiofactors. (2008)
  221. a b Blatt T, Littarru GP. Biochemical rationale and experimental data on the antiaging properties of CoQ(10) at skin levelBiofactors. (2011)
  222. a b Zhang M, et al. Coenzyme Q(10) enhances dermal elastin expression, inhibits IL-1α production and melanin synthesis in vitroInt J Cosmet Sci. (2012)
  223. ^ Inui M, et al. Mechanisms of inhibitory effects of CoQ10 on UVB-induced wrinkle formation in vitro and in vivoBiofactors. (2008)
  224. ^ López LC, et al. Treatment of CoQ(10) deficient fibroblasts with ubiquinone, CoQ analogs, and vitamin C: time- and compound-dependent effectsPLoS One. (2010)
  225. ^ Choi BS, et al. Effect of coenzyme Q10 on cutaneous healing in skin-incised miceArch Pharm Res. (2009)
  226. a b Cordero MD, et al. Mitochondrial dysfunction and mitophagy activation in blood mononuclear cells of fibromyalgia patients: implications in the pathogenesis of the diseaseArthritis Res Ther. (2010)
  227. a b Cordero MD, et al. Oxidative stress correlates with headache symptoms in fibromyalgia: coenzyme Q₁₀ effect on clinical improvementPLoS One. (2012)
  228. ^ Cordero MD, et al. Coenzyme Q10 distribution in blood is altered in patients with fibromyalgiaClin Biochem. (2009)
  229. ^ Cordero MD, et al. Coenzyme Q10 in salivary cells correlate with blood cells in Fibromyalgia: improvement in clinical and biochemical parameter after oral treatmentClin Biochem. (2012)
  230. ^ Cordero MD, et al. Oxidative stress and mitochondrial dysfunction in fibromyalgiaNeuro Endocrinol Lett. (2010)
  231. ^ Cordero MD, et al. Oral coenzyme Q10 supplementation improves clinical symptoms and recovers pathologic alterations in blood mononuclear cells in a fibromyalgia patientNutrition. (2012)
  232. ^ Cordero MD, et al. Coenzyme Q(10): a novel therapeutic approach for Fibromyalgia? case series with 5 patientsMitochondrion. (2011)
  233. a b Cordero MD, et al. Can Coenzyme Q10 improve clinical and molecular parameter in FibromyalgiaAntioxid Redox Signal. (2013)
  234. a b Miyamae T, et al. Increased oxidative stress and coenzyme Q10 deficiency in juvenile fibromyalgia: amelioration of hypercholesterolemia and fatigue by ubiquinol-10 supplementationRedox Rep. (2013)
  235. ^ Goldstone AP. Prader-Willi syndrome: advances in genetics, pathophysiology and treatmentTrends Endocrinol Metab. (2004)
  236. a b Miller JL, et al. Carnitine and coenzyme Q10 levels in individuals with Prader-Willi syndromeAm J Med Genet A. (2011)
  237. ^ Eiholzer U, et al. Developmental profiles in young children with Prader-Labhart-Willi syndrome: effects of weight and therapy with growth hormone or coenzyme Q10Am J Med Genet A. (2008)
  238. ^ Werbach MR. Nutritional strategies for treating chronic fatigue syndromeAltern Med Rev. (2000)
  239. ^ Bentler SE, Hartz AJ, Kuhn EM. Prospective observational study of treatments for unexplained chronic fatigueJ Clin Psychiatry. (2005)
  240. ^ Maes M, et al. Coenzyme Q10 deficiency in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is related to fatigue, autonomic and neurocognitive symptoms and is another risk factor explaining the early mortality in ME/CFS due to cardiovascular disorderNeuro Endocrinol Lett. (2009)
  241. ^ Mikirova N, Casciari J, Hunninghake R. The assessment of the energy metabolism in patients with chronic fatigue syndrome by serum fluorescence emissionAltern Ther Health Med. (2012)
  242. ^ Mancini A, et al. Seminal antioxidants in humans: preoperative and postoperative evaluation of coenzyme Q10 in varicocele patientsHorm Metab Res. (2005)
  243. ^ Balercia G, et al. Coenzyme Q10 and male infertilityJ Endocrinol Invest. (2009)
  244. a b Mancini A, Balercia G. Coenzyme Q(10) in male infertility: physiopathology and therapyBiofactors. (2011)
  245. ^ Balercia G, et al. Total oxyradical scavenging capacity toward different reactive oxygen species in seminal plasma and sperm cellsClin Chem Lab Med. (2003)
  246. ^ Aitken RJ, Clarkson JS, Fishel S. Generation of reactive oxygen species, lipid peroxidation, and human sperm functionBiol Reprod. (1989)
  247. ^ Aitken RJ, et al. New insights into sperm physiology and pathologyHandb Exp Pharmacol. (2010)
  248. ^ Desai N, et al. Free radical theory of aging: implications in male infertilityUrology. (2010)
  249. ^ Fawcett DW. The mammalian spermatozoonDev Biol. (1975)
  250. ^ Kalén A, et al. Nonaprenyl-4-hydroxybenzoate transferase, an enzyme involved in ubiquinone biosynthesis, in the endoplasmic reticulum-Golgi system of rat liverJ Biol Chem. (1990)
  251. ^ Aitken RJ, et al. Analysis of sperm movement in relation to the oxidative stress created by leukocytes in washed sperm preparations and seminal plasmaHum Reprod. (1995)
  252. ^ Ford WC, Whittington K. Antioxidant treatment for male subfertility: a promise that remains unfulfilledHum Reprod. (1998)
  253. ^ Johnson L, Varner DD. Effect of daily spermatozoan production but not age on transit time of spermatozoa through the human epididymisBiol Reprod. (1988)
  254. ^ Wolff H, et al. Leukocytospermia is associated with poor semen qualityFertil Steril. (1990)
  255. a b Mancini A, et al. Coenzyme Q10: another biochemical alteration linked to infertility in varicocele patientsMetabolism. (2003)
  256. ^ Mancini A, et al. Effects of testosterone on antioxidant systems in male secondary hypogonadismJ Androl. (2008)
  257. ^ Mancini A, et al. Evaluation of antioxidant systems in pituitary-adrenal axis diseasesPituitary. (2010)
  258. a b c d Balercia G, et al. Coenzyme Q(10) supplementation in infertile men with idiopathic asthenozoospermia: an open, uncontrolled pilot studyFertil Steril. (2004)
  259. a b Balercia G, et al. Coenzyme Q10 treatment in infertile men with idiopathic asthenozoospermia: a placebo-controlled, double-blind randomized trialFertil Steril. (2009)
  260. ^ Angelitti AG, et al. Coenzyme Q: potentially useful index of bioenergetic and oxidative status of spermatozoaClin Chem. (1995)
  261. ^ Mancini A, et al. Relationship between sperm cell ubiquinone and seminal parameters in subjects with and without varicoceleAndrologia. (1998)
  262. ^ Naughton CK, Nangia AK, Agarwal A. Pathophysiology of varicoceles in male infertilityHum Reprod Update. (2001)
  263. a b Lewin A, Lavon H. The effect of coenzyme Q10 on sperm motility and functionMol Aspects Med. (1997)
  264. a b Safarinejad MR. Efficacy of coenzyme Q10 on semen parameters, sperm function and reproductive hormones in infertile menJ Urol. (2009)
  265. ^ Pryor J, et al. Peyronie’s diseaseJ Sex Med. (2004)
  266. ^ Lindsay MB, et al. The incidence of Peyronie’s disease in Rochester, Minnesota, 1950 through 1984J Urol. (1991)
  267. a b Safarinejad MR. Safety and efficacy of coenzyme Q10 supplementation in early chronic Peyronie’s disease: a double-blind, placebo-controlled randomized studyInt J Impot Res. (2010)
  268. ^ Tarnopolsky MA. The mitochondrial cocktail: rationale for combined nutraceutical therapy in mitochondrial cytopathiesAdv Drug Deliv Rev. (2008)
  269. ^ Bertelli A, Ronca G. Carnitine and coenzyme Q10: biochemical properties and functions, synergism and complementary actionInt J Tissue React. (1990)
  270. ^ Shojaei M, et al. Effects of carnitine and coenzyme Q10 on lipid profile and serum levels of lipoprotein(a) in maintenance hemodialysis patients on statin therapyIran J Kidney Dis. (2011)
  271. ^ Duguez S, et al. Mitochondrial biogenesis during skeletal muscle regenerationAm J Physiol Endocrinol Metab. (2002)
  272. ^ Wu Z, et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1Cell. (1999)
  273. ^ Turchanowa L, et al. Influence of physical exercise on polyamine synthesis in the rat skeletal muscleEur J Clin Invest. (2000)
  274. ^ Lee NK, MacLean HE. Polyamines, androgens, and skeletal muscle hypertrophyJ Cell Physiol. (2011)
  275. ^ Buhaescu I, Izzedine H. Mevalonate pathway: a review of clinical and therapeutical implicationsClin Biochem. (2007)
  276. ^ Jeng KC, et al. Effect of microbial fermentation on content of statin, GABA, and polyphenols in Pu-Erh teaJ Agric Food Chem. (2007)
  277. ^ Keith M, et al. Coenzyme Q10 in patients undergoing CABG: Effect of statins and nutritional supplementationNutr Metab Cardiovasc Dis. (2008)
  278. ^ Ghirlanda G, et al. Evidence of plasma CoQ10-lowering effect by HMG-CoA reductase inhibitors: a double-blind, placebo-controlled studyJ Clin Pharmacol. (1993)
  279. ^ Wynn RL. The effects of CoQ10 supplements on patients taking statin drugsGen Dent. (2010)
  280. ^ Nielsen ML, Pareek M, Henriksen JE. Reduced synthesis of coenzyme Q10 may cause statin related myopathyUgeskr Laeger. (2011)
  281. ^ Silver MA, et al. Effect of atorvastatin on left ventricular diastolic function and ability of coenzyme Q10 to reverse that dysfunctionAm J Cardiol. (2004)
  282. ^ Sikka P, et al. Statin intolerance: now a solved problemJ Postgrad Med. (2011)
  283. ^ Harper CR, Jacobson TA. Evidence-based management of statin myopathyCurr Atheroscler Rep. (2010)
  284. ^ Wyman M, Leonard M, Morledge T. Coenzyme Q10: a therapy for hypertension and statin-induced myalgiaCleve Clin J Med. (2010)
  285. ^ Toyama K, et al. Rosuvastatin combined with regular exercise preserves coenzyme Q10 levels associated with a significant increase in high-density lipoprotein cholesterol in patients with coronary artery diseaseAtherosclerosis. (2011)
  286. ^ Dahan A, Amidon GL. Grapefruit juice and its constituents augment colchicine intestinal absorption: potential hazardous interaction and the role of p-glycoproteinPharm Res. (2009)
  287. ^ Honda Y, et al. Effects of grapefruit juice and orange juice components on P-glycoprotein- and MRP2-mediated drug effluxBr J Pharmacol. (2004)
  288. ^ Grapefruit juice enhance the uptake of coenzyme Q10 in the human intestinal cell-line Caco-2.
  289. ^ Belcaro G, et al. Investigation of Pycnogenol® in combination with coenzymeQ10 in heart failure patients (NYHA II/III)Panminerva Med. (2010)
  290. ^ Hidaka T, et al. Safety assessment of coenzyme Q10 (CoQ10)Biofactors. (2008)
  291. ^ Marcoff L, Thompson PD. The role of coenzyme Q10 in statin-associated myopathy: a systematic reviewJ Am Coll Cardiol. (2007)
  292. ^ Rosenfeldt FL, et al. Coenzyme Q10 in the treatment of hypertension: a meta-analysis of the clinical trialsJ Hum Hypertens. (2007)
  293. ^ Rosenfeldt F, et al. Systematic review of effect of coenzyme Q10 in physical exercise, hypertension and heart failureBiofactors. (2003)
  294. ^ Ferrante KL, et al. Tolerance of high-dose (3,000 mg/day) coenzyme Q10 in ALSNeurology. (2005)
  295. ^ Shults CW, et al. Pilot trial of high dosages of coenzyme Q10 in patients with Parkinson’s diseaseExp Neurol. (2004)
  296. ^ Shults CW, Haas R. Clinical trials of coenzyme Q10 in neurological disordersBiofactors. (2005)
  297. ^ Ikematsu H, et al. Safety assessment of coenzyme Q10 (Kaneka Q10) in healthy subjects: a double-blind, randomized, placebo-controlled trialRegul Toxicol Pharmacol. (2006)
  298. ^ Guidance for Industry Estimating the Maximum Safe Starting Dose in Initial Clinical Trials for Therapeutics in Adult Healthy Volunteers.
  299. Yubero-Serrano EM, et al. Postprandial antioxidant effect of the Mediterranean diet supplemented with coenzyme Q10 in elderly men and womenAge (Dordr). (2011)
  300. Teran E, et al. Coenzyme Q10 supplementation during pregnancy reduces the risk of pre-eclampsiaInt J Gynaecol Obstet. (2009)
  301. Dai YL, et al. Reversal of mitochondrial dysfunction by coenzyme Q10 supplement improves endothelial function in patients with ischaemic left ventricular systolic dysfunction: a randomized controlled trialAtherosclerosis. (2011)
  302. Fumagalli S, et al. Coenzyme Q10 terclatrate and creatine in chronic heart failure: a randomized, placebo-controlled, double-blind studyClin Cardiol. (2011)
  303. Shah SA, et al. Electrocardiographic and hemodynamic effects of coenzyme Q10 in healthy individuals: a double-blind, randomized controlled trialAnn Pharmacother. (2007)
  304. Burke BE, Neuenschwander R, Olson RD. Randomized, double-blind, placebo-controlled trial of coenzyme Q10 in isolated systolic hypertensionSouth Med J. (2001)
  305. Müller T, et al. Coenzyme Q10 supplementation provides mild symptomatic benefit in patients with Parkinson’s diseaseNeurosci Lett. (2003)
  306. Gökbel H, et al. Effects of coenzyme Q10 supplementation on plasma adiponectin, interleukin-6, and tumor necrosis factor-alpha levels in menJ Med Food. (2010)
  307. Nadjarzadeh A, et al. Coenzyme Q10 improves seminal oxidative defense but does not affect on semen parameters in idiopathic oligoasthenoteratozoospermia: a randomized double-blind, placebo controlled trialJ Endocrinol Invest. (2011)
  308. Yubero-Serrano EM, et al. Mediterranean Diet Supplemented With Coenzyme Q10 Modifies the Expression of Proinflammatory and Endoplasmic Reticulum Stress-Related Genes in Elderly Men and WomenJ Gerontol A Biol Sci Med Sci. (2011)
  309. Liao P, et al. Effects of coenzyme Q10 supplementation on liver mitochondrial function and aerobic capacity in adolescent athletesZhongguo Ying Yong Sheng Li Xue Za Zhi. (2007)
  310. Zhang P, et al. Treatment of coenzyme Q10 for 24 weeks improves lipid and glycemic profile in dyslipidemic individualsJ Clin Lipidol. (2018)
  311. Dahri M, et al. Oral coenzyme Q10 supplementation in patients with migraine: Effects on clinical features and inflammatory markersNutr Neurosci. (2018)
  312. Shoeibi A, et al. Effectiveness of coenzyme Q10 in prophylactic treatment of migraine headache: an open-label, add-on, controlled trialActa Neurol Belg. (2017)
  313. Mehrpooya M, et al. Evaluating the Effect of Coenzyme Q10 Augmentation on Treatment of Bipolar Depression: A Double-Blind Controlled Clinical TrialJ Clin Psychopharmacol. (2018)
  314. Nadjarzadeh A, et al. Effect of Coenzyme Q10 supplementation on antioxidant enzymes activity and oxidative stress of seminal plasma: a double-blind randomised clinical trialAndrologia. (2014)
  315. Sawaddiruk P, et al. Coenzyme Q10 supplementation alleviates pain in pregabalin-treated fibromyalgia patients via reducing brain activity and mitochondrial dysfunctionFree Radic Res. (2019)
  316. Parohan M, et al. The synergistic effects of nano-curcumin and coenzyme Q10 supplementation in migraine prophylaxis: a randomized, placebo-controlled, double-blind trialNutr Neurosci. (2019)
  317. Izadi A, et al. Hormonal and Metabolic Effects of Coenzyme Q10 and/or Vitamin E in Patients With Polycystic Ovary SyndromeJ Clin Endocrinol Metab. (2019)
  318. Mousavinejad E, et al. Coenzyme Q10 supplementation reduces oxidative stress and decreases antioxidant enzyme activity in children with autism spectrum disordersPsychiatry Res. (2018)
  319. Sanoobar M, et al. Coenzyme Q10 supplementation ameliorates inflammatory markers in patients with multiple sclerosis: a double blind, placebo, controlled randomized clinical trialNutr Neurosci. (2015)
  320. Sanoobar M, et al. Coenzyme Q10 as a treatment for fatigue and depression in multiple sclerosis patients: A double blind randomized clinical trialNutr Neurosci. (2016)
  321. Gholami M, et al. Effects of coenzyme Q10 supplementation on serum values of adiponectin, leptin, 8-isoprostane and malondialdehyde in women with type 2 diabetesGynecol Endocrinol. (2018)
  322. Jahangard L, et al. Influence of adjuvant Coenzyme Q10 on inflammatory and oxidative stress biomarkers in patients with bipolar disorders during the depressive episodeMol Biol Rep. (2019)
  323. Fallah M, et al. Clinical trial of the effects of coenzyme Q10 supplementation on glycemic control and markers of lipid profiles in diabetic hemodialysis patientsInt Urol Nephrol. (2018)
  324. Mohseni M, et al. Beneficial Effects of Coenzyme Q10 Supplementation on Lipid Profile and Intereukin-6 and Intercellular Adhesion Molecule-1 Reduction, Preliminary Results of a Double-blind Trial in Acute Myocardial InfarctionInt J Prev Med. (2015)
  325. Serag H, El Wakeel L, Adly A. Coenzyme Q10 administration has no effect on sICAM-1 and metabolic parameters of pediatrics with type 1 diabetes mellitusInt J Vitam Nutr Res. (2020)
  326. Žmitek K, et al. The effect of dietary intake of coenzyme Q10 on skin parameters and condition: Results of a randomised, placebo-controlled, double-blind studyBiofactors. (2017)
  327. Martin JK, et al. Phospholipase A2 as a probe of phospholipid distribution in erythrocyte membranes. Factors influencing the apparent specificity of the reactionBiochemistry. (1975)
  328. Mirhashemi SM, et al. The effects of coenzyme Q10 supplementation on cardiometabolic markers in overweight type 2 diabetic patients with stable myocardial infarction: A randomized, double-blind, placebo-controlled trialARYA Atheroscler. (2016)